The palladium-catalyzed intramolecular cyclization of alkadienyl-substituted 1,3-diketones

R. Goddard, G. Hopp, P.W. Jolly *, C. Krüger, R. Mynott, C. Wirtz
Max-Planck-Institut für Kohlenforschung, D-45466 Mülheim an der Ruhr, Germany

Received 25 April 1994

Abstract

Hydroxydeca-3,7,9-triene-2-one (prepared by metallation of acetylacetone followed by treatment with 1-bromopenta-2,4-diene) undergoes intramolecular cyclization in the presence of a $\left.\left[\mathrm{Pd}^{i}{ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{i} \mathrm{Pr}_{2}\right)\right]$ catalyst to give a mixture of cyclohexanone and cycloheptenone derivatives. The cyclohexanone 2-(1-hydroxyethyliden)-3-vinylcyclohexanone isomerizes in the presence of palladium to give the palladium-alkene complex (η^{2}-2-acetyl-3-ethylcyclohex-2-enone) $\mathrm{Pd}^{(}{ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}$) whose crystal structure has been established by X -ray diffraction. A related cyclization reaction involving the disubstituted 1,3-diketone 9 -hydroxy-1,3,7,12,14-pentaene-7-one leads to the formation of a mixture of spiro compounds (mainly 5,11 -divinyl-spiro[5.5]undeca-1,7-dione) whose structures have been elucidated with the help of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopies using ${ }^{2} \mathrm{D}-\mathrm{NMR}$ techniques.

Keywords: Palladium catalysis; Intramolecular cyclization; 1,3-diketones

1. Introduction

There is considerable current interest in transition metal-catalyzed cyclization reactions and systems involving palladium have proved to be particularly versatile [1,2]. In recent publications we reported that the selectivity of the palladium-catalyzed reaction between 1,3-dienes and active-hydrogen compounds to give 1:1-adducts can be significantly improved by modifying the metal with the bidentate ligand bis(diisopropylphosphino)ethane [3-5]. For example, the reaction between 1,3-butadiene and ethyl methylacetoacetate in the presence of $1 \mathrm{~mol} \%$ of ($\eta^{2}-1,3$-butadiene) $\mathrm{Pd}^{\mathrm{i}} \mathrm{Pr}_{2^{-}}$ $\mathrm{PC}_{2} \mathrm{H}_{4}{ }^{\mathrm{i}} \mathrm{Pr}_{2}$) (1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ leads within 7 h to the exclusive formation of the butene derivatives $2-4$ (ratio $15: 77: 8$) without contamination due to products resulting from the oligomerization of the butadiene.

[^0]

Here we report the extension of this class of reaction to the intramolecular cyclization of alkadienyl-substituted 1,3-diketones.

2. Results and discussion

The reaction which we have investigated in greatest detail is that of 4-hydroxydeca-3,7,9-triene-2-one (5). This compound has been prepared in 63% yield by reacting penta-1,4-dione (acetylacetone) with sodium amide in liq. NH_{3} followed by treatment with 1 -bromopenta-2,4-diene in a manner similar to that described for the preparation of nona-2,4-dione [6].
Table 1
The ${ }^{1} \mathrm{H}$ NMR spectroscopic data for $9-11$ measured in CDCl_{3} at 400.1 MHz

		10				
n	$\delta \mathrm{H} n, J\left(n, n^{\prime}\right)$					
3	$\begin{aligned} & 2.25 \mathrm{~m}, J(3,3) \sim 14 \\ & 2.22 \mathrm{~m} \end{aligned}$	2.38 m	$2.29 \mathrm{~m}, 2.42 \mathrm{~m}$	$\sim 2.27 \mathrm{~m}$	$\begin{aligned} & \sim 2.25 \mathrm{~m}, J(3,3) 16, \\ & 2.38 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2.24 \mathrm{~m}, J(3,3) 14, \\ & 2.86 \mathrm{dt} \end{aligned}$
4	$\begin{aligned} & 1.91 \mathrm{~m}, J(4,5) \sim 12, \\ & 1.63 \mathrm{~m}, J(4,5) \sim 4 \end{aligned}$	1.85 m	$1.67 \mathrm{~m}, 2.01 \mathrm{~m}$	$\sim 1.96 \mathrm{~m}$	$1.71 \mathrm{~m}, 1.97 \mathrm{~m}$	$1.62 \mathrm{~m}, ~ 2.04 \mathrm{~m}$
5	$\begin{aligned} & 2.41 \mathrm{~m}, J(5,5) \sim 12 \\ & J(5,6) \sim 12,1.58 \mathrm{~m} \end{aligned}$	$1.60 \mathrm{~m}, 2.06 \mathrm{~m}$	$1.59 \mathrm{~m}, 2.08 \mathrm{~m}$	$\sim 2.35 \mathrm{~m}$	1.77 m	$\begin{aligned} & 1.46 \mathrm{~m}, J(5,5) 13.7, \\ & \sim 2.18 \mathrm{~m} \end{aligned}$
6	2.47 ddd, $J(6,7) 8.8$	$3.18 \mathrm{dt}, J(6,7) 10.4$	2.16 m	~ 2.46 ddd, $J(6,7) 9.3$	3.05 m	$2.60 \mathrm{~m}, J(6,7) 9$
7	$\begin{aligned} & 5.96 \text { ddd, } \\ & J(7,8 \mathrm{E}) 10.2, \\ & J(7,8 Z) 17.1 \end{aligned}$	$\begin{aligned} & 5.65 \mathrm{dt}, J(7,8 \mathrm{E}) 10.2 \\ & J(7,8 \mathrm{Z}) 16.8 \end{aligned}$	$\begin{aligned} & 6.29 \mathrm{dt}, J(7,8 \mathrm{E}) 9.2 \\ & J(7,8 \mathrm{Z}) 17.6 \end{aligned}$	$\begin{aligned} & 5.58 \text { ddd, } J(7,8 \mathrm{E}) 0.2, \\ & J(7,8 \mathrm{Z}) 16.8 \end{aligned}$	$\begin{aligned} & 5.58 \mathrm{~m}, J(7,8 \mathrm{E}) 10.2 \\ & J(7,8 \mathrm{Z}) 17 \end{aligned}$	$\begin{aligned} & 5.65 \text { ddd, } \\ & J(7,8 \mathrm{E}) 10.2 \\ & J(7,8 Z) 17 \end{aligned}$
$8 E$	5.00 ddd, $J(8 \mathrm{E}, 8 \mathrm{Z}) 2.2$	$5.08 \mathrm{~m}, J(8 \mathrm{E}, 8 \mathrm{Z}) 1.8$	5.00 dq	$5.06 \mathrm{dd}, J(8 \mathrm{E}, 8 \mathrm{Z}) 1.8$	$5.06 \mathrm{dd}, J(8 \mathrm{E}, 8 \mathrm{Z}) 1.4$	$5.02 \mathrm{dd}, J(8 \mathrm{E}, 8 \mathrm{Z}) 1.4$,
8Z	4.95 ddd	5.15 m ,	5.00 dq	5.09 m	5.03 m	5.05 dd
10		2.36 m	$2.19 \mathrm{~m}, 2.33 \mathrm{~m}$	$\sim 2.31 \mathrm{~m}$	$\begin{aligned} & 1.99 \mathrm{~m}, J(10,10) 8.6, \\ & 2.43 \mathrm{~m} \end{aligned}$	$\sim 2.17 \mathrm{~m}, \sim 2.26 \mathrm{~m}$
11		2.04 m	$1.54 \mathrm{~m}, 1.66 \mathrm{~m}$	1.90 m	$\sim 1.76 \mathrm{~m}, 1.88 \mathrm{~m}$	$\sim 1.85 \mathrm{~m}, \sim 1.94 \mathrm{~m}$
12		$\begin{aligned} & 2.83 \mathrm{~m}, J(12,13) 8.8 \\ & J(12,14) 0.7,2.15 \mathrm{~m} \end{aligned}$	$1.99 \mathrm{~m}, 2.10 \mathrm{~m}$	$\begin{aligned} & 2.83 \mathrm{~m}, J(12,13) 8.8 \\ & J(12,14) 0.7 \end{aligned}$	$3.06 \mathrm{~m}, J(12,13) 9$	$\begin{aligned} & 3.87 \mathrm{~m}, J(12,13) 6.8, \\ & J(12,14) 1.1 \end{aligned}$
13		5.66 dt	5.59 m	$\begin{aligned} & 5.75 \mathrm{ddq}, \\ & J(13,14) 15.3, \\ & J(13,15) 1.7 \end{aligned}$	$\begin{aligned} & 5.33 \mathrm{dq}, J(13,14) 5.2, \\ & J(13,15) 1.6 \end{aligned}$	$\begin{aligned} & 5.47 \mathrm{~m}, J(13,14) 15.4 \\ & J(13,15) 1.4, \end{aligned}$
14		5.55 m	5.80 m	5.49 ddq, $J(14,15) 6.4$	$5.56 \mathrm{~m}, J(14,15) 6.4$	$5.59 \mathrm{~m}, J(14,15) 6.2$
15		$2.10 \mathrm{~m}, 2.81 \mathrm{~m}$	2.12 m	1.67 dd	1.67 dd	1.67 m

The NMR spectra of 5 indicate that the compound exists at room temperature to the extent of 91% in the enol form.

The catalytic reaction of 5 in the presence of 2 $\mathrm{mol} \%$ of 1 at $40^{\circ} \mathrm{C}$ in acetone results in a quantitative conversion into the cyclohexanone derivative 7 (as a racemic mixture) as well as into lesser amounts of the cycloheptenone derivative 8 (7:8~12:1).

Treatment of 5 with further sodium amide and 1-bromopenta-2,4-diene results in its conversion into 7-hydroxypentadeca-1,3,7,12,14-pentaene-9-one (6) in 41% yield. Under the conditions described above, 6 is catalytically converted into a mixture of spiro compounds of which ca. 80% is one of three diastereomeric forms of 9 with lesser amounts of both diastereomers of 10 and of three of the four diastereomeric forms of 11. These compounds have been separated by preparative GC and identified by the NMR spectroscopic investigations described below.

NMR spectroscopic analysis of the reaction mixture before completion indicates that the reaction is stepwise: the mixture contains $\mathbf{1 2}$ in addition to 9.

12

A related cyclization reaction has been observed with 4-hydroxy-7-methylenenona-3,8-diene-2-one (13) which reacts to give mainly 14 as well as a variety of products, e.g. 15, presumably the result of a palladium-catalyzed dehydrogenation of 14 [7].

13

14

15

Surprisingly, and disappointingly, no catalytic products

Table 2
The ${ }^{13} \mathrm{C}$ NMR spectroscopic data for $9-11$ measured in CDCl_{3} at 100.6 MHz (numbering scheme shown in Table 1)

n	9	10		11		
	$\delta \mathrm{Cn}, \mathrm{J}(\mathrm{C}, \mathrm{H})$	$\delta \mathrm{Cn}, J(\mathrm{C}, \mathrm{H})$	$\delta \mathrm{Cn}, J(\mathrm{C}, \mathrm{H})$	$\delta \mathrm{C} n, J(\mathrm{C}, \mathrm{H})$	$\delta \mathrm{Cn}, \mathrm{J}(\mathrm{C}, \mathrm{H})$	$\delta \mathrm{Cn}, \mathrm{J}(\mathrm{C}, \mathrm{H})$
1	70.7	74.5	75.5	71.7	70.5	70.7
2	208.1	209.0	208.8	206.0	210.8	206.0
3	41.7, J(C, H) 130	41.5, J(C, H) 130	41.4, $J(\mathrm{C}, \mathrm{H}) 130$	40.4, J(C, H) 130	$42.0, J(\mathrm{C}, \mathrm{H}) 128$	$39.6, J(\mathrm{C}, \mathrm{H}) 130$
4	25.1, J(C, H) 130	23.1, J(C, H) 128	26.7. J(C, H) 134	23.4, J(C, H) 130	23.6, $J(\mathrm{C}, \mathrm{H}) 128$	$24.7, J(\mathrm{C}, \mathrm{H}) 130$
5	29.1, $J(\mathrm{C}, \mathrm{H}) 131$	29.3, J(C. H) 126	29.4, J(C, H) 131	27.9. J(C, H) 128	25.2, J(C, H) 129	28.1, $J(\mathrm{C}, \mathrm{H}) 131$
6	49.8, J(C, H) 129	$47.3, J(\mathrm{C}, \mathrm{H}) 132$	$55.2, J(\mathrm{C}, \mathrm{H}) 129$	48.3. J (C, H) 128	45.5, J(C, H) 129	48.3. $J(\mathrm{C}, \mathrm{H}) 132$
7	138.2, J(C, H) 156	136.4, $J(\mathrm{C}, \mathrm{H}) 151$	139.6, J(C, H) 158	138.3, J(C, H) 153	137.6, J(C, H) 152	138.1, J(C, H) 158
8	117.2, J(C, H) 158	$117.5, J(\mathrm{C}, \mathrm{H}) 156$	115.9, J(C, H) 157	118.0, J(C. H) $154 / 159$	$\begin{aligned} & 116.9, J(\mathrm{C}, \mathrm{H}) \\ & 154 / 159 \end{aligned}$	116.7. J(C. Н) $155 / 159$
9		210.1	210.0	215.0	217.7	215.2
10		$38.0, J(\mathrm{C}, \mathrm{H}) 128$	40.8, J(C, H) 128	39.7, $J(\mathrm{C}, \mathrm{H}) 131$	38.4, J (С, H) 132	39.4, J(C, H) 130
11		$25.1, J(\mathrm{C}, \mathrm{H}) 132$	$25.0, \mathrm{~J}(\mathrm{C}, \mathrm{H}) 132$	27.0, J(C, H) 133	$26.4, J(\mathrm{C}, \mathrm{H}) 132$	24.6, J (C, H) 133
12		26.4, $J(\mathrm{C}, \mathrm{H}) 130$	26.4, J(C, H) 130	48.0, J(C, H) 126	45.1, J(C, H) 131	43.5
13		$131.8, J(\mathrm{C}, \mathrm{H}) 156$	130.9, J(C, H) 155	130.0, J(C, H) 152	131.6, J(C, Н) 149	128.9. $J(\mathrm{C}, \mathrm{H}) 152$
14		$127.5, J(\mathrm{C}, \mathrm{H}) 160$	129.1, J(C, H) 161	$128.3, J(\mathrm{C}, \mathrm{H}) 147$	127.9, J(C, H) 148	127.9, J(C, H) 153
15		28.1, J(C, H) 130	29.8, J(C, H) 131	18.0, J(C, H) 126	17.9, J(C, H) 127	18.1, J(C, H) 126

could be isolated from the reaction of 4-hydroxyun-deca-3,8,10-triene-2-one. The identification of the spiro compounds $9-11$ is based upon ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopic investigations (Tables 1 and 2).

The structures were determined and the spectra assigned using (i) COSY spectra, and ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ chemical shifts correlated 2D spectra optimized for (ii) ${ }^{1} J(\mathrm{C}, \mathrm{H})$ and (iii) long range couplings ${ }^{n} J(\mathrm{C}, \mathrm{H})$. Unless stated, the given signal assignments are unambiguous, even though in most cases the proton NMR spectra showed considerable second order character, which complicated the interpretation of the 2D NMR spectra. The spin systems were not analyzed in detail, so that no further assignment of the geminal protons as axial or equatorial was attempted. NOESY spectra were also recorded but neither the NOE data nor the ${ }^{13} \mathrm{C}$ chemical shifts provided a reliable means of determining the relative configurations of both C-6 carbon atoms in 9 and of C-6 and C-12 in $\mathbf{1 1}$.

Our investigation of the mechanism of the formation of 1:1-adducts between 1,3-butadiene and methanol [8,9] or ethyl methylacetoacetate [4,5] suggest that a key role is played by η^{3}-allyl-palladium intermediates which are formed by the protonation of an ($\eta^{2}-1,3$-butadiene) Pd species. The formation of 7 , for example, can be visualized as proceeding by the intramolecular transfer of a proton to the 7-position of a palladium-complexed molecule of 5 to give the η^{3}-al-lyl-palladium-species 16 which reacts further by reductive coupling (Scheme 1), which leaves it undecided whether 16 should be more correctly formulated as a close-ion-pair of the type $\left[\left(\eta^{3} \text {-allyl }\right) \mathrm{Pd}\right]^{+} \mathrm{X}^{-} .8$ is then seen to be the product of a proton transfer to the 10 -position in 5 .

In an attempt to obtain direct mechanistic evidence, we have studied the stoichiometric reaction between 1 and 5 at $-25^{\circ} \mathrm{C}$: a yellow, crystalline compound (17) is formed in 73% yield. Attempts to elucidate the structure of $\mathbf{1 7}$ by NMR spectroscopy were initially inconclusive, so that a crystal structure determination was carried out by X-ray diffraction. The molecular struc-

Scheme 1.

Fig. 1. The molecular structure of 17 with selected bond distances (\AA) and angles (${ }^{\circ}$). Bond distances (\AA): $\mathrm{Pd}-\mathrm{Cl} 2.140(8)$; $\mathrm{Pd}-\mathrm{C} 2$ $2.162(8) ; \mathrm{C} 1-\mathrm{C} 21.46(1) ; \mathrm{C} 2-\mathrm{C} 91.47(1) ; \mathrm{C} 9-\mathrm{C} 101.46(2) ; \mathrm{C} 2-\mathrm{C} 3$ $1.50(1) ; \mathrm{C} 1-\mathrm{C} 71.48(1) ; \mathrm{C} 7-\mathrm{C} 81.50(2) ; \mathrm{O} 1-\mathrm{C} 91.17(1) ; \mathrm{O} 2-\mathrm{C} 3$ $1.20(1)$; Pd \cdots O1 3.07(2); Pd-P1 2.325(2); Pd-P2 2.283(2). Bond angles (${ }^{\circ}$): C2-Pd1-C1 29.6(3); C2-Pd1-P1 116.7(2); C1-Pd1-P1 156.3(2); C2-Pd1-P2 154.4(3); C1-Pd1-P2 115.1(2); P1-Pd-P2 88.6(1); C3-C2-C9 119.4(8); C6-C1-C7 110.7(7); O1-C9-C2-C1 (torsion) $30(1)$.
ture is shown in Fig. 1 and establishes that the compound contains a 2-acetyl-3-ethylcyclohex-2-enone molecule coordinated in an η^{2}-manner through the $\mathrm{C}=\mathrm{C}$ double bond to a $\mathrm{Pd}\left({ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)$ fragment. The palladium atom has a planar coordination geometry. The oxygen atom of the acetyl group is directed towards the Pd atom (torsion angle $\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 1$ $30(1)^{\circ}$) but does not interact directly ($\mathrm{Pd} \cdots$ O1 3.07 \AA). The organic ligand can be displaced unchanged from 17 by further reaction with bis(diisopropylphosphino)ethane. The significance of these results only became apparent after we established that 17 is also the product of a palladium-induced isomerization

Scheme 2.
of 7 (Scheme 2) and as such it can be regarded as a secondary product of the catalytic reaction.

3. Experimental section

The organometallic compounds described below and the intermediates formed in the catalytic reactions are air-sensitive and therefore all reactions were carried out in an atmosphere of argon. The following compounds were prepared by published procedures: ($\eta^{3}-2-$ $\left.\mathrm{MeC}_{3} \mathrm{H}_{4}\right)_{2} \mathrm{Pd}$ [10], ${ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}$ [11], ($\eta^{2}-1,3-$ $\left.\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Pd}^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}$) [11], 1-bromopenta-2,4-diene [12], 2-bromomethylbuta-1,3-diene [13], 1-bromohexa-3,5-diene [14]. Microanalyses were performed by Dornis and Kolbe, Microanalytical Laboratory, Mülheim an der Ruhr. The NMR spectra $\left({ }^{1} \mathrm{H}\right.$, ${ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) were measured on Bruker AMX-400, AMX300 , AM- and AC-200 FT-NMR spectrometers at room temperature unless otherwise stated. In the ${ }^{13} \mathrm{C}$ NMR spectra, the ${ }^{1} J(\mathrm{C}, \mathrm{H})$ coupling constants were estimated using gated decoupled spectra and the multiplicities were checked in DEPT spectra. The 2D NMR spectra of 9-11 were recorded on an AMX-400 using the $\cos \gamma-90$, hxco and noesytr programs from the standard Bruker pulse program library.

3.1. Preparation of 4-hydroxy-3,7-trans,9-triene-2-one (5)

Penta-2,4-dione ($14.6 \mathrm{~g}, 15 \mathrm{ml}, 0.14 \mathrm{~mol}$) dissolved in ether (10 ml) was added slowly at $-78^{\circ} \mathrm{C}$ to a dark grey suspension of sodium amide in liquid ammonia prepared by reacting liq. $\mathrm{NH}_{3}(200 \mathrm{ml})$ with freshly cut pieces of sodium ($6.2 \mathrm{~g}, 0.27 \mathrm{~mol}$) as described in ref. 6 . The cooling bath was removed and the argon turned off. 1-Bromopenta-2,4-diene ($17.9 \mathrm{~g}, 0.12 \mathrm{~mol}$) in ether (100 ml) was added dropwise over 20 min . The reaction mixture was stirred for a further 30 min , ether (100 ml) was added, the ammonia evaporated by careful warming with a water bath and the mixture treated with ice $(50 \mathrm{~g})$. To the resulting solid mass was added conc. HCl (15 ml) and ice (3 g) and the organic phase was separated from the resulting solution which was also extracted with ether ($3 \times 25 \mathrm{ml}$). The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and shown by ${ }^{13} \mathrm{C}$ NMR to consist of $5(78 \%)$, the related diketone (9%) and the cis-isomer 4-hydroxydeca-3,7-cis,9-triene-2-one (13%). Pure 5 was obtained by fractional distillation: yield 12.6 $\mathrm{g}\left(63 \%, 0.08 \mathrm{~mol}\right.$, b.p. $108^{\circ} \mathrm{C} /$ water pump vacuum). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 72.26$; H, 8.49. Found: C, 72.15; H, 8.55\% MS: m/e $166\left(\mathrm{M}^{+}\right), 151,148,133$, 123, 81. IR (film): ν (enol) $1618,1606 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300.1 \mathrm{MHz}\right.$): $\delta 15.37$ ($\mathrm{s}, \mathrm{HO}:-4$), 6.19 (dt, HC:-9, J(8, 9) 10.3), 5.98 (dd, HC:-8, J(7.8) 15.0), 5.58 (dt, HC:-7, J(6, 7) 6.5), 5.41 (s, HC:-3), 5.01 (dd, HC:$10 \mathrm{Z}, J(10 \mathrm{Z}, 9) 16.8), 4.88$ (dd, HC:-10E, $J(10 \mathrm{E}, 9)$
10.0), $2.29\left(\mathrm{~m}, \mathrm{CH}_{2}-5 / 6\right), 1.94(\mathrm{~s}, \mathrm{Me}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 193.1$ (C-2), 190.5 (C-4), 136.6 (C-9, J(C, H) 154), $132.5 / 131.6(\mathrm{C}-7 / 8, \quad J(\mathrm{C}, \mathrm{H})$ $152 / 151$), 115.2 (C-10), 99.5 (C-3, J(C, H) 165), 37.5 (C-5, J(C, H) 130), 27.9 (C-6, J(C, H) 130), 23.3 (C-1, $J(\mathrm{C}, \mathrm{H}) 128)$.

3.1.1. Deca-7-trans,9-diene, 2,4-dione

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300.1 \mathrm{MHz}$): $\delta 3.47$ ($\mathrm{s}, \mathrm{HC}:-3$), 2.11 (s, Me:-1). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 202.8$ (C-4), 201.5 (C-2), 136.5 (C-9), 132.2/131.7 (C-3/4, $J(\mathrm{C}, \mathrm{H}) 151), 115.2$ (C-10), 57.4 (C-3, J(C, H) 129), 42.6 (C-5, J(C, H) 125), 30.4 (C-1, J(C, H) 128), 25.9 (C-6, $J(\mathrm{C}, \mathrm{H}) 128)$.

3.1.2. 4-Hydroxydeca-3,7-cis,9-triene-2-one

${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 192.8(\mathrm{C}-2), 190.7$ (C-4), 131.5 (C-7), 130.0/129.8 (C-8/9), 117.4 (C-10), 99.6 (C-3), 37.7 (C-5), 24.4 (C-1), 23.3 (C-6).

3.2. Preparation of 7-hydroxypentadeca-1,3-trans, 7,12trans, 14-pentaene-9-one (6)

Prepared as described above by reacting 5 (16.6 $\mathrm{g}, 0.10 \mathrm{~mol}$) dissolved in ether (10 ml) with sodium amide ($7.8 \mathrm{~g}, 0.20 \mathrm{~mol}$) in liq. $\mathrm{NH}_{3}(200 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ followed by the addition of 1-bromo-penta-2,4-diene ($14.7 \mathrm{~g}, 0.10 \mathrm{~mol}$) in ether (10 ml). The reaction mixture was worked up as described above and the product isolated by crystallization from pentane at $-5^{\circ} \mathrm{C}$: yield $9.5 \mathrm{~g}\left(41 \%\right.$ theory, 0.04 mol , m.p. $38^{\circ} \mathrm{C}$). The ${ }^{13} \mathrm{C}$ NMR spectrum indicates that the compound exists as a keto-enol mixture. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 77.55; H, 8.68. Found: C, 77.48 ; H, 8.66%. MS: $m / e 232$ (M^{+}), 151, 123, 109, 81, 67. IR; $\nu 1635$ (enol). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200.1 \mathrm{MHz}\right.$): 13.72 (s, HO-7), 6.27 (dt, HC:-2), $\mathrm{J}(2,3) 10.5), 6.06$ (dd, HC:-3, J(3, 4) 15.0), 5.65 (m, HC:-4), 5.09 (dd, HC:-1E, J(1E, 2) 10.0), 4.97 (dd, HC:-1Z, J(1Z, 2) 17.0), 3.53 (s, HC:-8), 2.36 $\left(\mathrm{m}, \mathrm{CH}_{2}-5 / 6\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta 192.8$ (C-9), 136.5 (C-2), 132.4 (C-4), 131.6 (C-3), 115.3 (C-1), 99.0 (C-8), 37.4 (C-6), 28.0 (C-5).

3.2.1. Pentadeca-1,3-trans, 7-trans, 14-tetraene-7,9-dione
 ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta 202.7(\mathrm{C}-7), 56.9$ (C-8), 42.7 (C-6), 25.9 (C-5).

3.3. Preparation of 4-hydroxy-7-methylenenona-3,8-di-ene-2-one (13).

Prepared as described above by reaction of penta-1,4-dione ($8.4 \mathrm{~g}, 8.6 \mathrm{ml}, 0.8 \mathrm{~mol}$) in ether (7 ml) with sodium amide ($6.0 \mathrm{~g}, 0.15 \mathrm{~mol}$) in liq. $\mathrm{NH}_{3}(170 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ followed by treatment with 2-bromomethylbu-ta-1,3-diene ($10.2 \mathrm{~g}, 0.07 \mathrm{~mol}$) in ether (7 ml). The reaction mixture was worked up as described above
and the compound isolated by distillation: yield 4.6 g (43% theory, 0.03 mol , b.p. $100-115^{\circ} \mathrm{C} / 15$ bar). The ${ }^{13} \mathrm{C}$ NMR spectrum indicates that the compound exists as a keto-enol mixture. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: C, $72.26 ; \mathrm{H}, 8.49$. Found: C, $71.60 ; \mathrm{H}, 8.91 \%$. MS: m / e $166\left(\mathrm{M}^{+}\right), 151,148,85 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200.1 \mathrm{MHz}\right)$: $\delta 13.73$ (s, HO:-4), 6.32 (dd, HC:-8), 5.45 ($\mathrm{s}, \mathrm{HC}:-3$), 5.20 ($\mathrm{m}, \mathrm{HC}:-9 \mathrm{Z}, J(8,9 \mathrm{Z}) 17.7), 5.03$ (m, HC:$9 \mathrm{E}, J(8,9 \mathrm{E}) 10.8), 5.00\left(\mathrm{~m}, \mathrm{H}_{2} \mathrm{C}:-7\right), 2.44\left(\mathrm{~m}, \mathrm{CH}_{2}-\right.$ $5 / 6), 1.99(\mathrm{Me}-1) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta$ 193.4 (C-2), 190.4 (C-4), 144.4 (C-7), 137.9 (C-8), 115.8 (C-9), $113.2\left(\mathrm{CH}_{2}:-3\right), 99.4(\mathrm{C}-3), 36.5(\mathrm{C}-5), 26.5(\mathrm{C}-6)$, 24.3 (C-1).

3.3.1. 7-Methylenenona-8-ene-2,4-dione
 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200.1 \mathrm{MHz}\right): \delta 6.30$ (dd, $\mathrm{HC}:-8$), 5.17 (m, HC:-9Z, J(8, 9Z) 17.7), $3.53\left(\mathrm{CH}_{2}-3\right)$.

3.4. Preparation of 4-hydroxyundeca-3,8-trans, 10-triene-2-one.

Prepared as described above by reacting penta-1,4dione ($17.4 \mathrm{~g}, 17.9 \mathrm{ml}, 0.17 \mathrm{~mol}$) in ether (15 ml) with sodium amide ($13.6 \mathrm{~g}, 0.35 \mathrm{~mol}$) in liq. $\mathrm{NH}_{3}(300 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ followed by treatment with 1-bromohexa-3,5-diene ($27.9 \mathrm{~g}, 0.17 \mathrm{~mol}$) in ether (15 ml). The reaction mixture was worked up as described above and the compound isolated by distillation: yield 3.1 g (12% theory, 0.02 mol , b.p. $100^{\circ} \mathrm{C} /$ oil pump vacuum). The ${ }^{13} \mathrm{C}$ NMR spectrum indicates that the compound exists almost exclusively in the enol form. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 73.30 ; \mathrm{H}, 8.95$. found: C, $72.60 ; \mathrm{H}, 9.08 \%$. MS: $m / e 180\left(\mathrm{M}^{+}\right), 162,147,100,85$. IR (film): $\nu 1616$ (enol). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200.1 \mathrm{MHz}\right): \delta 13.6$ (s, HO:4), 6.24 (dt, HC:-10, $J(9,10) 10.0), 6.00(\mathrm{~m}, \mathrm{HC}:-$ $9, J(8,9) 15.0), 5.60(\mathrm{dt}, \mathrm{HC}:-8, J(7,8) 7.0), 5.43$ (s, HC:-3), 5.04 (ddd, HC:-11Z, J(10, 11Z) $16.8, J(11 \mathrm{Z}, 11 \mathrm{E}) 2.0), 4.91$ (ddd, HC:-11E, $J(10,11 \mathrm{E})$ 10.0), $2.20\left(\mathrm{~m}, \mathrm{CH}_{2}-5\right), 2.06\left(\mathrm{q}, \mathrm{CH}_{2}-7, J(7,8)+\mathrm{J}(6,7)\right.$ 7.1), $1.98(\mathrm{~s}, \mathrm{Me}-1), 1.65\left(\mathrm{~m}, \mathrm{CH}_{2}-6, J(6,7)+J(5,6)\right.$ 7.4). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right): \delta 193.5(\mathrm{C}-2)$, 190.8 (C-4), 136.6 (C-10), 133.4 (C-8), 131.4 (C-9), 114.7 (C-11), 99.4 (C-3), 37.1 (C-5), 31.4 (C-7), 24.6 (C-6), 24.3 (Me-1).

No catalytic cyclization reaction was observed upon reacting this compound in the presence of ($\eta^{2}-1,3-$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Pd}^{(}{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)$.

3.5. Catalytic cyclization of 4-hydroxydeca-3,7,9-triene-2-

 one (5).In a typical experiment $5(1.5078 \mathrm{~g}, 9.1 \mathrm{mmol})$ and $\left(\eta^{2}-1,3-\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Pd}\left({ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)(0.075 \mathrm{~g}, 0.2 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $40^{\circ} \mathrm{C}$ and the reaction followed by GC. The reaction was terminated after 24 h by adding elemental sulfur. The volatile components
were distilled off and shown by NMR spectroscopy to consist to the extent of 60% of 2-(1-hydroxyethyliden)-3-vinylcyclohexanone (7) and of 5% of 2-acetyl-3-meth-ylcyclohept-4-enone (8) and the corresponding enol. The components were separated by preparative GC using a $5 \mathrm{~m} \times 14 \mathrm{~mm}$ Volaspher A 4 ($60-80 \mathrm{mesh}$) column coated with 20% SE $54 /$ SE 30 at $170^{\circ} \mathrm{C}$.

3.5.1. 2-(1-Hydroxyethyliden)-3-vinylcyclohexanone (7)

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300.1 \mathrm{MHz}$): $\delta 16.16$ (sbr, $\mathrm{HO}:-2$), 5.66 (ddd, HC:-9, $J(9,10 \mathrm{E}) 1.6, J(9,10 \mathrm{Z}) 16.0), 4.90$ (dt, HC:-10E, J(10E, 10Z) 1.6), 4.69 (dt, HC:-10Z), ca. 3.07 (m, HC-8, $J(8,9) 5.7, J(8,10 \mathrm{E}) \quad 1,5, J(8,10 \mathrm{Z})$ 1.6), ca. 2.08 (m, $\mathrm{CH}_{2}-5$), 1.87 ($\mathrm{s}, \mathrm{Me}-1$), ca. 1.45 (m, $\mathrm{CH}_{2}-6 / 7$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta 199.0$ (C-4), 183.1 (C-2), 141.2 (C-9, J(C, H) 153), 115.1 (C$10, J(\mathrm{C}, \mathrm{H}) 154 / 158), 107.6(\mathrm{C}-3), 36.9(\mathrm{C}-8, J(\mathrm{C}, \mathrm{H})$ 129), 30.5 (C-5), $28.0(\mathrm{C}-7, J(\mathrm{C}, \mathrm{H}) 128), 23.8$ (C$1, J(\mathrm{C}, \mathrm{H}) 127), 16.2(\mathrm{C}-6, J(\mathrm{C}, \mathrm{H}) 128)$; numbering scheme shown below.

3.5.2. 2-Acetyl-3-methylcyclohept-4-enone (8a)
${ }^{13} \mathrm{C}$ NMR (d_{8}-THF, 300.1 MHz): 206.8/202.8// $208.9 / 203.8 \quad\left(\mathrm{C}-2 / 4 / / 2^{\prime} / 4^{\prime}\right), \quad 135.6 / 136.2$ (C$\left.8 / 8^{\prime}, J(\mathrm{C}, \mathrm{H}) 158 / 160\right), 128.5 / 127.9\left(\mathrm{C}-7 / 7^{\prime}\right), 74.4 /$ $67.6\left(\mathrm{C}-3 / 3^{\prime}, J(\mathrm{C}, \mathrm{H}) 133\right), 41.6\left(\mathrm{C}-5 / 5^{\prime}, J(\mathrm{C}, \mathrm{H}) 130 /\right.$ 126), 32.5 (C-9/9', J(C, H) 132), $30.2\left(\mathrm{C}-1 / 1^{\prime}, J(\mathrm{C}, \mathrm{H})\right.$ $128 / 128$), 25.5 (C-6/6', J(C, Н) 129), 20.5/22.6 (C$\left.10 / 10^{\prime}, J(\mathrm{C}, \mathrm{H}) 128\right)$; the compound consists of a mixture of diastereomers and the numbering scheme is shown above.
3.5.3. 2(1-Hydroxyethyliden)-3-vinylcyclohept-4-enone (8b)
${ }^{13} \mathrm{C}$ NMR (d_{8}-THF, 300.1 MHz): $\delta 195.4$ (C-4), 190.5 (C-2), $133.5(\mathrm{C}-8, J(\mathrm{C}, \mathrm{H}) 160), 128.2$ (C-7), 114.5 (C-3), 38.4 (C-5, J(C, H) 130), 33.2 (C-9, J(C, H) 124), 24.3 (C-6), 22.4 (C-1), 18.4 (C-2); numbering scheme shown above.
3.6. Catalytic cyclization of 7-hydroxypentadeca-1,3,7, 12,14-pentaene-9-one (6).

The reaction was carried out as described above. The products were separated from the catalyst by filtration through a short florisil column and separated by preparative GC using an $8 \mathrm{~m} \times 14 \mathrm{~mm}$ Chrom P ($60-80$ mesh) column coated with $20 \% \mathrm{SE}^{54}$ at $220^{\circ} \mathrm{C}$. The spiro compounds $9-11$ were identified by NMR
spectroscopy (Tables 1 and 2 and accompanying discussion).

Termination of the reaction after 24 h and ${ }^{13} \mathrm{C}$ NMR analysis of the product mixture indicated that it consisted to the extent of 55% of 9 and of 30% of $\mathbf{1 2}$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 201.1 (C-9), 182.7 (C-7), 141.5 (C-14), 136.7 (C-2), 133.3 (C-3), 131.4 (C-4), 115.7 (C-1), 115.1 (C-15), 107.7 (C-8), 36.5 (C-13), 35.4 (C-6), 30.6 ($\mathrm{C}-10$), 28.2 ($\mathrm{C}-12$), $27.0(\mathrm{C}-5), 16.3$ ($\mathrm{C}-11$); numbering scheme shown below.

3.7. Preparation of (η^{2}-2-acetyl-3-ethylcyclohex-2-enone) $\mathrm{Pd}\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{i} \mathrm{Pr}_{2}\right.$) (17).
$\left(\eta^{2}-1,3-\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Pd}\left({ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)(1.023 \mathrm{~g}, 2.4$ mmol) and 4-hydroxydeca-3,7,9-triene-2-one (0.402 $\mathrm{g}, 2.4 \mathrm{mmol})$ were stirred in acetone $(5 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ for 5 h . Diethyl ether (5 ml) was added to the resulting yellow solution which was stored at $-25^{\circ} \mathrm{C}$ for a month. The compound was deposited as yellow crystals: yield $0.9 \mathrm{~g}\left(73 \%\right.$ theory, 1.8 mmol , m.p. ca. $80^{\circ} \mathrm{C} \mathrm{dec}$.). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}$: C, $53.88 ; \mathrm{H}, 8.67 ; \mathrm{P}, 11.58$; Pd, 19.89. Found: C, 53.95; H, 8.68; P, 11.50; Pd, 19.96%, MS: $m / e 534\left(\mathrm{M}^{+}\right), 368 .{ }^{1} \mathrm{H}$ NMR $\left(d_{8^{-}}\right.$ THF, $193 \mathrm{~K}, 400.1 \mathrm{MHz}$): $\delta 3.1-0.8 \mathrm{~m} .{ }^{13} \mathrm{C}$ NMR ($d_{8^{-}}$ THF, $193 \mathrm{~K}, 100.6 \mathrm{MHz}$: $\delta \quad 204.3 / 196.1$ (C$2 / 4, J(\mathrm{P}, \mathrm{C}) 66.8), 88.2 / 83.9(\mathrm{C}-3 / 8, J(\mathrm{P}, \mathrm{C}) 6.7 / 3.8$, $15.2 / 41.0), 34.2 / 30.7(\mathrm{C}-5 / 6 / 7), 27.3(\mathrm{C}-16, J(\mathrm{P}, \mathrm{C})$ 14), $26.2(\mathrm{C}-15, J(\mathrm{P}, \mathrm{C}) 14), 24.7(\mathrm{C}-14, J(\mathrm{P}, \mathrm{C}) 10)$, $24.5(\mathrm{C}-13, J(\mathrm{P}, \mathrm{C}) 17), 22.9(\mathrm{C}-11 / 12) .{ }^{31} \mathrm{P}$ NMR ($d_{8^{-}}$ $\mathrm{THF}, 193 \mathrm{~K}, 81.0 \mathrm{MHz}): \delta 59.5,53.9, J(\mathrm{P}, \mathrm{P}) 21.9$; numbering scheme shown below. The compound may also be prepared by reacting $\left(\eta^{3}-2-\mathrm{MeC}_{3} \mathrm{H}_{4}\right)_{2} \mathrm{Pd}$, ${ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}$ and 7 in diethyl ether for one week.

3.8. Reaction of 17 with ${ }^{i} \mathrm{Pr}_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}^{i} \mathrm{Pr}_{2}$

17 ($0.1124 \mathrm{~g}, 0.2 \mathrm{mmol}$) was reacted with ${ }^{i} \mathrm{Pr}_{2} \mathrm{P}$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}(0.049 \mathrm{~g}, 0.2 \mathrm{mmol})$ in diethyl ether for one week. The volatile components were distilled under

Table 3
Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for 17 with standard deviations in parentheses ${ }^{\text {a }}$

Atom	x	y		
Pd	$0.1828(1)$	$0.1238(1)$	$0.0119(1)$	0.039
P1	$0.2128(2)$	$0.1831(1)$	$0.1088(2)$	0.046
P2	$0.2790(2)$	$0.0958(1)$	$0.1548(2)$	0.051
O1	$-0.0212(6)$	$0.1188(3)$	$0.0257(8)$	0.111
O2	$0.1002(6)$	$0.1836(2)$	$-0.2496(8)$	0.104
C1	$0.1203(6)$	$0.0849(2)$	$-0.1212(7)$	0.045
C2	$0.0832(6)$	$0.1233(3)$	$-0.1392(7)$	0.047
C3	$0.1194(7)$	$0.1500(3)$	$-0.2412(9)$	0.062
C4	$0.1906(8)$	$0.1341(4)$	$-0.3344(9)$	0.083
C5	$0.2436(8)$	$0.1011(4)$	$-0.2843(9)$	0.078
C6	$0.1853(7)$	$0.0697(3)$	$-0.2265(9)$	0.065
C7	$0.0682(8)$	$0.0529(3)$	$-0.0652(9)$	0.071
C8	$-0.0032(9)$	$0.0380(3)$	$-0.153(1)$	0.093
C9	$0.0016(7)$	$0.1339(3)$	$-0.070(1)$	0.065
C10	$-0.0567(9)$	$0.1616(4)$	$-0.134(1)$	0.117
C11	$0.2525(9)$	$0.2211(3)$	$0.0020(9)$	0.075
C12	$0.284(1)$	$0.2582(3)$	$0.065(1)$	0.102
C13	$0.3283(9)$	$0.2042(3)$	$-0.082(1)$	0.096
C14	$0.1312(7)$	$0.2096(3)$	$0.207(1)$	0.065
C15	$0.0583(9)$	$0.2248(4)$	$0.129(1)$	0.109
C16	$0.0937(9)$	$0.1832(4)$	$0.312(1)$	0.107
C17	$0.3059(7)$	$0.1737(3)$	$0.2212(9)$	0.061
C18	$0.3096(8)$	$0.1339(3)$	$0.2716(9)$	0.080
C19	$0.3844(7)$	$0.0760(3)$	$0.1036(9)$	0.070
C20	$0.3748(9)$	$0.0382(4)$	$0.034(1)$	0.098
C21	$0.4348(9)$	$0.1046(5)$	$0.024(1)$	0.115
C22	$0.2329(8)$	$0.0569(3)$	$0.259(1)$	0.078
C23	$0.1421(9)$	$0.0660(4)$	$0.304(1)$	0.101
C24	$0.2956(9)$	$0.0455(4)$	$0.374(1)$	0.107

${ }^{a^{a}} U_{e \varphi}=1 / 3 \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{i j} a_{i}^{*} a_{j}^{*} \overline{\mathrm{a}}_{\mathrm{i}} \cdot \overline{\mathrm{a}}_{\mathrm{j}}$
high vacuum and the organic product shown to consist mainly of 2-acetyl-3-ethylcyclohex-2-enone. ${ }^{13} \mathrm{C}$ NMR (d_{8}-THF): $\delta 202.06 / 196.07(\mathrm{C}-2 / 4), 163.56 / 139.32(\mathrm{C}-$ $3 / 8$), $37.51 / 29.37(\mathrm{C}-5 / 7), 30.87$ (C-1), 28.37 (C-9), 22.25 (C-6), 12.18 (C-10); numbering scheme shown above.

3.9. Single crystal X-ray structure analysis of 17

Crystals suitable for an X-ray structural determination [15] were grown from acetone/diethyl ether: molecular formula $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}$, molecular weight $535.0 \mathrm{~g} \mathrm{~mol}^{-1}$, crystal colour yellow-green, crystal size $0.53 \times 0.56 \times 0.28 \mathrm{~mm}, a=15.110(3), b=10.281(1), c$ $=34.634(3) \AA ; V=5380.2 \AA^{3}, T=293 \mathrm{~K}, \mathrm{~d}_{\text {cal }}=1.32 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu=69.60 \mathrm{~cm}^{-1}, Z=8$, orthorhombic, space group Pbca [No. 61], Enraf-Nonius CAD4 diffractometer, $\lambda=1.54178 \AA$, scan mode $\omega-2 \Theta, 11484$ measured reflections $(\pm h,+k,+1),\left[(\sin \Theta / \lambda]_{\text {max }} 0.63\right.$ \AA^{-1}, analytical absorption correction [max: 0.998 ; min: $0.756], 5533$ independent reflection, 4444 observed reflections [$I>2 \sigma(I)$] for 262 refined parameters, structure solved by heavy atom method, H atom positions calculated $\left(U_{\mathrm{H}}=0.05 \AA^{2}\right), \quad R=0.072, \quad R_{w}=0.075$, residual electron density $1.36 \mathrm{e}^{\circ}{ }^{-3}$. Atomic positional
parameters and equivalent isotropic thermal parameters are given in Table 3.

Supplementary material available

Tables of crystallographic data, listings of H atom positional parameters, anisotropic thermal parameters, distances and angles.

References and notes

[1] B.M. Trost, Angew. Chem., 101 (1989) 1199.
[2] B.M. Trost, Ade: Chem. Ser., 230 (1992) 463.
[3] P.W. Jolly and N. Kokel, Synthesis, 771 (1990).
[4] G. Hopp, Dissertation, Ruhr-Universität Bochum, 1992.
[5] A. Döhring, R. Goddard, G. Hopp, P.W. Jolly, N. Kokel and C. Krüger, Inorg. Chim. Acta., in press.
[6] R. Hauser, Org. Synth. Collect., 5 (1973) 848.
[7] A. Akhren, A.M. Moiseenkov and F.A. Lakhvich, Bull. Acad. Sci. USSR, (1970) 2473.
[8] P.W. Jolly, Angew. Chem., 97 (1985) 279.
[9] T. Joswig, Dissertation, Ruhr-Universität Bochum, 1984.
[10] Y. Tatsuno and T. Yoshida, Inorg. Synth., 19 (1979) 220.
[11] R. Benn, P.W. Jolly, T. Joswig, R. Mynott and K.-P. Schick, Z. Naturforsch., $41 b$ (1986) 680.
[12] C. Prevost, P. Miginiac and L. Miginiac-Groizeleau, Bull. Soc. Chim. Fr., (1964) 2485.
[13] E.J. Corey, N.H. Andersen, R.M. Carlson, J. Paust, E. Vedejs, I. Vlattas and R.E.K. Winter, J. Am. Chem. Soc., 90 (1968) 3245.
[14] M. Julia, S. Julia and R. Guegan, Bull. Soc. Chim. Fr., (1960) 1072.
[15] Computer programs used: Data reduction: Datap, P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Crystallogr., 18 (1965) 1035; Structure solution: shelxs-86, G.M. Sheldrick, Acta Crystallogr., A 46 (1990) 467; Structure refinement: GFMLX, a modified version of orfls, W.R. Busing, K.O. Martin and H.A. Levy, Report ORNL-TM 305, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1962. Molecular diagram (50% thermal ellipsoids): ORTEP, C.K. Johnson, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1976. Computer: VAX 4000-300. Scattering factors: International Tables for X-ray Crystallography, Kluwer Academic Press, Dordrecht, 1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4.

[^0]: * Corresponding author.

